A fractional order Hardy inequality
نویسندگان
چکیده
منابع مشابه
On a Higher-order Hardy Inequality
The Hardy inequality ∫ Ω |u(x)|pd(x)−p dx c ∫ Ω |∇u(x)|p dx with d(x) = dist(x, ∂Ω) holds for u ∈ C∞ 0 (Ω) if Ω ⊂ n is an open set with a sufficiently smooth boundary and if 1 < p < ∞. P.Haj lasz proved the pointwise counterpart to this inequality involving a maximal function of Hardy-Littlewood type on the right hand side and, as a consequence, obtained the integral Hardy inequality. We extend...
متن کاملA new restructured Hardy-Littlewood's inequality
In this paper, we reconstruct the Hardy-Littlewood’s inequality byusing the method of the weight coefficient and the technic of real analysis includinga best constant factor. An open problem is raised.
متن کاملThe Best Constant in a Fractional Hardy Inequality
We prove an optimal Hardy inequality for the fractional Laplacian on the half-space. 1. Main result and discussion Let 0 < α < 2 and d = 1, 2, . . .. The purpose of this note is to prove the following Hardy-type inequality in the half-space D = {x = (x1, . . . , xd) ∈ R : xd > 0}. Theorem 1. For every u ∈ Cc(D), (1) 1 2 ∫
متن کاملA Hardy–Moser–Trudinger inequality
In this paper we obtain an inequality on the unit disk B in R2, which improves the classical Moser-Trudinger inequality and the classical Hardy inequality at the same time. Namely, there exists a constant C0 > 0 such that ∫ B e 4πu2 H(u) dx ≤ C0 <∞, ∀ u ∈ C 0 (B), where H(u) := ∫
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 2004
ISSN: 0019-2082
DOI: 10.1215/ijm/1258138400